Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.
Стадии гидравлического удара можно проиллюстрироват ь на следующем примере (рис.1): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).
Рис.1. Стадии гидравлического удара
При перекрытии крана происходят следующие процессы:
- Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν ». При этом в стояке и квартирном трубопроводе давление одинаковое (p).
- При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10 -10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
- Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
- Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с».
- В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
- Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
- При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
- Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.
На рис. 2 стадии гидравлического удара показаны в графическом виде.
Рис. 2. Графики изменения давления при гидравлическом ударе.
График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).
График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.
График на рис .2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.
Разновидности гидравлических ударов и основные расчетные положения
В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:
где Т3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.
В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.
В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):
Δp = ρ · ν · c, Па,
где ρ – плотность транспортируемой жидкости, кг/м 3 ; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.
В свою очередь скорость распространения ударной волны с определяется по формуле:
, м/c,
где c0 — скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Еж – объемный модуль упругости жидкости (можно принимать по табл. 2), Па; Ест – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3).
Таблица 1. Характеристики жидкостей
Объемный модуль упругости, Па
Скорость звука, м/с
Таблица 2. Характеристики материалов стенок труб
Модуль упругости, Па
Если учесть, что скорость движения воды в квартирных системах не должна превышать 3 м/с (п.7.6. СНиП 2.04.01), то для трубопроводов из различных материалов можно вычислить величину повышения давления при возможном прямом полном гидравлическом ударе. Такие сводные данные по некоторым трубам представлены в табл. 3.
Таблица 3. Повышение давление при гидравлическом ударе при скорости потока 3 м/с
Материал и габариты труб
Скорость ударной волны, м/с
Сталь (ВГП нормальные трубы)
При непрямом гидравлическом ударе повышение давления рассчитывается по формуле:
, Па.
В табл. 4 приведено среднее время срабатывания основной квартирной арматуры. Для каждого типа этой арматуры рассчитана длина трубопровода, более которой гидравлический удар перестает быть прямым.
Таблица 4. Длина участка прямого удара для водозапорной арматуры
Тип квартирной арматуры
Время срабатывания, с
Длина участка прямого удара, м
Для неметаллического трубопровода
Для металлического трубопровода
Рычажный кран или смеситель
Душевой переключатель (дивертер)
Электромагнитный клапан стиральной машины
Электромагнитный клапан посудомоечной машины
Электромагнитный клапан системы защиты от протечек (1/2")
Заливной клапан унитаза
Возможные последствия гидравлических ударов
В квартирных сетях возникновение гидравлических ударов, конечно, не влечет таких масштабных разрушительных последствий, как на магистральных трубопроводах большого диаметра. Однако и здесь они могут доставить массу хлопот и убытков, если не учитывать возможность их появления.
Периодически повторяющиеся гидравлические удары в квартирной трубной разводке могут стать причиной следующих неприятностей:
– сокращение срока службы трубопроводов. Нормативный срок службы внутренних трубопроводов определяется по совокупности характеристик (температура, давление, время), в которых эксплуатируется труба. Даже столь кратковременные, но часто повторяющиеся, знакопеременные скачки и провалы давления, происходящие при гидравлическом ударе, существенно искажают картину эксплуатационног о режима трубопровода, сокращая срок его безаварийной эксплуатации. В большей степени это относится к полимерным и многослойным трубопроводам;
– выдавливание прокладок и уплотнителей в арматуре и соединителях трубопроводов. Этому подвержены такие элементы, как поршневые редукторы давления, шаровые краны, вентили и смесители с резиновыми сальниковыми кольцами, уплотнительные кольца обжимных и пресс-соединител ей, а также кольца полусгонов («американок»). В квартирных водосчетчиках выдавливание уплотнительного кольца между измерительной камерой и счетным механизмом может привести к попаданию воды в счетный механизм (рис.3);
Рис. 3. Попадание воды в счетный механизм водосчетчика в результате выдавливания прокладки
– даже однократный гидравлический удар может полностью вывести из строя контрольно-измер ительные приборы, установленные в квартире. Например, изгиб стрелки манометра от взаимодействия с ограничительным штифтом – явный признак имевшего место гидравлического удара (рис. 4);
Рис. 4. Характерное повреждение манометра гидравлическим ударом
– каждый гидроудар в квартирном трубопроводе из полимерных материалов, выполненном на обжимных, прессовых или надвижных соединителях, неизбежно приводит к микроскопическом у «сползанию» соединителя с трубопровода. В конце концов, может наступить момент, когда очередной гидроудар станет критическим – труба полностью «выползет» из соединителя (рис. 5);
Рис. 5. Нарушение обжимного соединения МПТ в результате воздействия гидроудара
– кавитационные явления, которые могут сопровождать гидравлический удар, нередко являются причиной появления каверн в золотнике и корпусе запорной арматуры. Схлопывание вакуумных пузырьков при кавитации просто «выгрызает» куски металла с поверхности, на которой они образуются. В результате золотник перестает выполнять свою функцию, то есть, герметичность запорного органа нарушается. Да и корпус такой арматуры очень быстро выйдет из строя (рис. 6);
Рис. 6. Кавитационное разрушение внутренней поверхности сгона перед электромагнитным клапаном
– особую опасность для квартирных трубопроводов, выполненных из многослойных труб, представляет зона разряжения ударной волны при гидравлическом ударе. При клеевом слое низкого качества или наличии непроклеенных участков, образующийся в трубе вакуум отрывает внутренний слой трубы, заставляя его «схлопываться» (рис.7, 8).
Рис. 7. Многослойная полипропиленовая труба, пострадавшая от гидравлического удара
Рис. 8. «Схлопнувшаяся» металлополимерна я труба
При частичном схлопывании труба будет продолжать выполнять свою функцию, но с гораздо большим гидравлическим сопротивлением. Однако может произойти и полное схлопывание – в этом случае труба будет перекрыта своим же внутренним слоем. К сожалению, ГОСТ 53630-2009 «Трубы напорные многослойные» не требует проведения испытания образцов труб при внутреннем давлении ниже атмосферного.
Однако ряд производителей, зная о подобной проблеме, включают в технические условия обязательный пункт о проверке трубы под разряжением. В частности, каждый рулон многослойных труб VALTEC подключается к вакуумному насосу, доводящему абсолютное давление в трубе до 0,2 атм (–0,8 бар избыточного). После чего с помощью компрессора через трубу прогоняется пенополистирольн ый шарик с диаметром, чуть меньшим проектного внутреннего диаметра трубы. Рулоны, через которые шарик не смог пройти, беспощадно бракуются и уничтожаются;
– еще одна опасность подстерегает при гидравлическом ударе внутренние трубопроводы горячего водоснабжения. Как известно, температура кипения воды находится в тесной зависимости от давления (табл. 5).
Таблица 5. Зависимость температуры кипения воды от давления
Абсолютное давление, атм
Если, допустим, в квартирный трубопровод поступает горячая вода с температурой 70 °С, а в зоне разрежения гидроудара давление снижается до абсолютного значения 0,3 атм, то в этой зоне вода превратится в пар. Учитывая, что объем пара при нормальных условиях почти в 1200 раз больше объема такой же массы воды, следует ожидать, что данное явление может привести к еще большему росту давления в зоне сжатия ударной волны.
Способы защиты от гидроударов в квартирных системах
Самым действенным и надежным способом защиты от гидравлического удара является увеличение времени перекрытия потока запорным органом. Именно этот способ используется на магистральных трубопроводах. Плавное закрытие задвижки не вызывает никаких разрушительных возмущений в потоке и позволяет избавиться от необходимости установки громоздких и дорогих демпфирующих устройств.
В квартирных системах такой способ не всегда приемлем, т.к. в наш обиход прочно вошли и «однорукие» рычажные смесители, электромагнитные клапаны бытовой техники, и прочая арматура, способная перекрыть поток в короткий промежуток времени. В связи с этим квартирные инженерные системы уже на стадии проекта должны обязательно проектироваться с учетом опасности возникновения гидроудара.
Конструктивные мероприятия, такие как использование эластичных вставок, компенсационных петель и расширителей, широкого распространения не получили. Наибольшей популярностью в настоящее время пользуется специально разработанная для этой цели арматура – пневматические (поршневые, рис. 9а, и мембранные, рис. 9б) или пружинные (рис.9в) гасители гидроударов.
Рис. 9. Типы гасителей гидроударов
В пневматических гасителе кинетическая энергия потока жидкости гасится энергией сжатия воздуха, давление которого изменяется по адиабате с показателем К = 1,4. Объем воздушной камеры пневматического гасителя определяется из выражения:
где P0 – начальное давление в воздушной камере, РК – конечное (предельное) давление в воздушной камере. В приведенной формуле левая часть представляет собой выражение для кинетической энергии потока жидкости, а правая – энергии сжатия воздуха.
Параметры пружин для пружинных компенсаторов находят из выражения:
где Dпр – средний диаметр пружины, I – число витков пружины, G – модуль сдвига, Fк – конечная сила, действующая на пружину, F0 – начальная сила, действующая на пружину.
В среде проектировщиков и монтажников бытует мнение, что обратные клапаны и редукторы давления тоже обладают способностью к гашению гидроударов.
Обратные клапаны, действительно, отсекая часть трубопровода в момент резкого перекрытия потока, уменьшают расчетную длину трубопровода, превращая прямой удар в непрямой, меньшей энергии. Однако, резко закрываясь под воздействием стадии сжатия ударной волны, клапан сам превращается в причину гидроудара в трубопроводе, расположенном до него. В стадии разряжения клапан снова открывается, причем, в зависимости от соотношения длин труб до клапана и после него, может настать такой момент, когда ударные волны двух участков сложатся, усилив скачок давления. Поршневые редукторы давления не могут служить гасителями гидравлических ударов в силу своей высокой инерционности – из-за работы сил трения в уплотнителях поршней, они просто не успевают отреагировать на мгновенное изменение давления. Кроме того, такие редукторы сами нуждаются в защите от гидроударов, вызывающих выдавливание уплотнительных колец из гнезд поршней.
Способностью частично поглощать энергию гидроударов обладают мембранные редукторы давления, однако они рассчитаны совсем на другие силовые воздействия, поэтому работа по гашению частых гидроударов быстро выведет их из строя. Кроме того, резкое перекрытие редуктора при ударной волне приводит, как в случае с обратным клапаном, к возникновению ударной волны на участке до редуктора, не защищенном мембраной.
Помимо всего прочего, квартирные гасители гидроударов кроме выполнения своей основной задачи выполняют еще несколько функций, немаловажных для безопасной эксплуатации квартирных трубопроводов. Эти функции будут рассмотрены на примере мембранного гасителя гидроударов VALTEC VT.CAR19 (рис. 10).
Гаситель гидроударов VT.CAR19
Рис. 10. Гаситель гидроударов VALTEC VT.CAR19
Квартирный гаситель гидроударов VALTEC VT.CAR19 конструктивно состоит (рис. 11) из шаровидного корпуса, выполненного из нержавеющей стали AISI 304L (1), с завальцованной мембраной из EPDM (2). Благодаря небольшим выпуклостям на поверхности мембраны обеспечиваются ее неплотное примыкание к корпусу и максимальная площадь контакта мембраны с транспортируемой средой.
Воздушная камера гасителя находится под заводским давлением 3,5 бара, что обеспечивает защиту квартирных трубопроводов, давление в которых не превышает 3 бар. Гаситель может защищать и трубопроводы с рабочим давлением до 10 бар, но в этом случае необходимо с помощью насоса, присоединяемого к ниппелю (3) увеличить давление в воздушной камере до значения 10,5 бара. В случае, когда рабочее давление в квартирной сети ниже 3 бар, рекомендуется через ниппель (3) выпустить часть воздуха из камеры до значения Рраб + 0,5 бар.
Рис.11. Конструкция гасителя VALTEC VT.CAR19
Технические характеристики и габаритные размеры гасителя приведены в табл. 6.
Таблица 6. Технические характеристики VALTEC VT.CAR19
Компенсатор гидроударов: назначение, устройство и принцип работы
Гидроудар — резкое увеличение давление в системе, которая отвечает за перекачку жидкостей. Это может быть водопровод, отопление, другие жидкостные системы. Возникает разница в давлении из-за резкого увеличения скорости потока жидкости или столкновения с воздушными пузырьками. Последствие — разрушение коммуникационных систем с образованием дальнейшей утечки, необходимость ремонта. Зачем нужен компенсатор гидроударов — предотвратить возникновение резких изменений давления, что позволит избежать негативных последствий для всей системы.
Назначение компенсатора гидроударов
Гаситель гидроударов в квартире или других помещениях, где предусмотрена прокладка жидкостных коммуникационных систем, защищает их от повреждений. Для этого часть жидкости принимается самим устройством, что позволяет снизить скорость протекания и плавно выровнять давление. Ввиду незначительных размеров защита распространяется только на устройства, расположенные в небольшой отдаленности. Однако снижение скорости потока даже на конкретном участке значительно сокращает вероятность возникновения гидроудара в используемой системе.
Принцип работы компенсатора гидроударов
Изделия разделяются на два основных вида по конструкции и способу срабатывания:
- Мембранные. Состоят из двух частей. Одна из них заполняется воздухом под давлением около 3 Бар. Вторая часть комплектуется мембраной из эластичного материала. При образовании гидроудара мембрана растягивается, что позволяет отвести часть воды. При нормализации давления мембрана начинает возвращаться в свое исходное положение, выжимая накопившуюся там воду обратно в систему.
- Пружинные. Принцип работы такого компенсатора гидроударов схож — часть жидкости при росте давления уходит в корпус блока. Однако регулирование давления происходит с помощью пружины. На ее конце размещен диск, на который воздействует поток жидкости. Если ее давление превысит определенное значение, пружина начинает сжиматься, отодвигая диск, что и позволяет уходить части воды в корпус. При восстановлении давления пружина самостоятельно разожмется.
Важно учитывать давление в системе, на которой планируется установка оборудования и подбирать его с учетом данного параметра. Мембранные устройства поддаются регулировке. Для этого достаточно открыть золотник и насосом накачать нужное давление, на котором и будет происходить срабатывание. Базовое значение при поставке с завода составляет 3 Бар, однако его можно подкачать до нужных параметров.
Пружинные обычно настроены на конкретное значение и дальнейшей регулировке не поддаются. Подобные изделия нужно сразу выбирать под установленное значение давления в системе, чтобы в дальнейшем не возникало проблем или необходимости в замене.
Где устанавливают компенсаторы гидроударов?
Компактные размеры и объем корпусов, который обычно не превышает 200 мл, определяет основные места установки оборудования. Преимущественно они расположены возле источника образования гидроудара:
- Краны с шаровой заслонкой.
- Гребенки водяные, включая используемые для подключения теплого пола.
- Трубки, идущие к бытовой технике — машинки для стирки и мойки посуды.
- После места монтажа насоса циркуляционного типа.
Куда ставить компенсаторы гидроударов могут подсказать профессиональные монтажники, подобрав оптимальное место для обеспечения надежной защиты.
Компенсаторы гидроударов от интернет-магазина Sanmaster.su
Интернет-магазин сантехники для дома Sanmaster.su предлагает купить компенсаторы гидроударов по цене, ниже розничной. В нашем ассортименте вы найдете такие варианты:
- Valtec VT.CAR19.I.04001 мембранного типа.
- FAR ½ дюйма HP (P Макс. 50 Бар) FA 2895 12 пружинного типа.
Вы уже знаете, для чего нужен компенсатор гидроударов, а мы знаем лучшие модели, доступные сегодня на рынке. Оформляйте заказ, и мы свяжемся с вами в ближайшее время.
Гидроудар в системах водоснабжения и отопления
Гидравлический удар – резкий скачок давления в трубопроводе, причина которого быстрое изменение скорости потока воды. Положительный гидроудар возникает из-за резкого закрытия задвижки, а отрицательный гидроудар — из-за резкого открытия. Очень нежелателен для систем отопления и водоснабжения положительный гидроудар.
Последствиями могут стать – трещины в трубах, выход из строя насоса, теплообменника, счётчика воды, манометра и другого оборудования, работающего под давлением, и конечно прекращение водо- и теплоснабжения дома, затопление соседей в квартире с нижних этажей. Самое неприятное – разрыв трубопровода. Постоянное воздействие ударов может привести к разгерметизации даже нового водопровода.
Причины возникновения гидроудара
- Резкое закрытие/открытие запорной арматуры
- Наличие воздуха в трубах(необходимо стравливать воздух из системы)
- Перебои в работе или выход из строя насоса
- Ошибки при монтаже системы
В современной системе вместо резьбовых вентилей, которые предусматривают плавное перекрытие потока воды, чаще применяют шаровые краны , которые резко перекрывают систему. Они удобны и надёжны в использовании, но количество гидроударов возрастает с их использованием в системе.
Если система водоснабжения неправильно смонтирована, то гидроудары могут возникать и с использованием вентилей. Основная причина – резкие переходы в диаметре труб . Когда жидкость перемещается под давлением по трубе большого диаметра и доходит до места, где труба «сужается» — это тоже может стать причиной для возникновения проблем, так как любая преграда на пути жидкости, двигающейся со скоростью, изменяет её объём и, соответственно, давление. Также это относится к резким поворотам и изгибам трубопровода . Меньше всего от такого удара защищены трубопроводы с диаметром труб до 100 мм и разводкой на большие расстояния.
Гидравлический удар возникает и из-за образования воздушных пустот, особенно на изгибе трубы.
На нижеприведённом рисунке наглядно видно, что происходит с трубой при резко закрытом кране — гидроудар:
Способы предотвращения гидроударов
Защитить систему водоснабжения дома или квартиры можно по-разному:
- Сначала необходимо осмотреть всю систему на предмет обнаружения протечек и вообще пригодности к эксплуатации, степени износа труб. Старые трубы лучше заменить на новые. Надёжность системы зависит от качества материалов и правильного монтажа.
- Установка запорной арматуры вентильного типа. Плавно закрывать кран, чтобы давление в системе водоснабжения выравнивалась плавно.
- Использование труб большего диаметра . Диаметр труб выбирайте более 100 мм. Чем больше диаметр труб, тем ниже скорость потока воды и соответственно гидроудар.
- Избегайте длинных участков прокладки труб и без резких изгибов, тогда в них не будут образовываться воздушные пробки.
- Не допускайте резкого перепада температур в водопроводной трубе. При проектировании дома необходимо учитывать, чтобы трубы шли по тем местам и помещениям, где перепад температуры будет минимален. Делать теплоизоляцию труб.
- Постоянно выполняйте профилактику:
- Проверяйте работу группы безопасности: манометра, воздухоотводчика, предохранительного клапана.
- Регулярно проверяйте состояние фильтров, которые задерживают песок, ржавчину.
- Используйте компенсаторное оборудование.
Компенсаторы и гасители гидроударов
Компенсаторы и гасители гидроударов – специальные приспособления, которые способны принимать в себя часть жидкости из общей системы, когда возрастает давление, снижая его таким образом.
Если ваш дом снабжается водой из автономного источника при помощи насосного оборудования, то используйте гидроаккумулятор. Он входит в состав насосных станций и представляет собой бак с резиновой мембраной, куда при гидроударе будет сбрасываться излишняя вода до нормализации давления системы.
Реле давления — элемент, который не спасёт от гидроудара, но отключит насос, когда вы перекроете кран, и давление превысит определённое значение. При этом надо учитывать, что выключение насоса не произойдёт мгновенно. Используйте насос с частотным преобразователем, который автоматически регулирует его работу и обеспечивает плавный пуск и остановку. Резкое повышение давления в системе, которое приводит к гидроудару, исключается.
В качестве амортизатора можно использовать трубу из эластичного пластика или термостойкого армированного каучука, который будет гасить энергию гидравлического удара.
Наиболее уязвимы для гидравлических ударов длинные трубопроводы, например, тёплый пол. Чтобы обезопасить такую систему, её оснащают термостатическим клапаном.
Термостат с суперзащитой. Иногда применяют термостат со спецзащитой от гидроудара. Подобные устройства имеют пружинный механизм, установленный между клапаном и термоголовкой. При избыточном давлении пружина срабатывает и не позволяет клапану полностью закрыться, как только мощность гидроудара снижается, клапан плавно закрывается. Устанавливают такой термостат строго по направлению стрелки на корпусе.
Схема устройства компенсатора гидроударов
На вышеприведённых схемах показаны примеры, как нужно правильно устанавливать компенсаторы. Они могут монтироваться горизонтально или вертикально, на коллекторах холодной и горячей воды или на любом участке трубопровода, ведущего к конечной точке потребления воды.
Здесь необходимо обратить внимание на то, что нельзя допускать застой воды у входа в компенсатор, иначе в системе могут начать размножаться бактерии. Поэтому инструкция не допускает его установку в верхней части стояка.
Согласно статистике, больше половины аварий на трубопроводах возникает не из-за коррозии или усталости материалов. Их причиной становятся гидроудары в системе водоснабжения. Но их вполне можно избежать, если сразу монтировать систему по всем правилам, и оснащать её специальными устройствами, гасящими ударную волну.
Перечисленные выше меры защиты будут более эффективными, если их применять комплексно, и всегда можно нейтролизовать неприятные последствия гидроудара и продлить срок эксплуатации труб и бытовой техники.