В слитках нержавеющей стали не образуется концентрированная усадочная раковина благодаря равномерному распределению легирующих элементов и хорошей текучести расплава. Эти свойства способствуют более однородной температуре в процессе охлаждения, что минимизирует вероятность образования усадочных дефектов.
Кроме того, рафинированные стали с низким содержанием серы и фосфора также способствуют снижению образования усадочной раковины, поскольку такие примеси могут вызывать неравномерности в кристаллизации и дефекты в структуре. В целом, правильный выбор состава стали и технологии плавления существенно влияет на качество конечного слитка.
Строение слитков кипящей стали
Особенности строения слитка кипящей стали обусловлены процессами газообразования, протекающими одновременно с процессами кристаллизации стали. В слитках кипящей стали не образуется концентрированная усадочная раковина, усадка рассредоточена по многочисленным газовым полостям. Поэтому для кипящей стали нет необходимости применять уширенные кверху изложницы и ее разливают в уширенные книзу сквозные изложницы.
Для уменьшения химической неоднородности стали процесс кипения прекращают вскоре после наполнения изложницы. Для этого применяют два способа:
1. Механическое закупоривание — накрывание слитка массивной металлической крышкой.
2. Химическое закупоривание — раскисление металла в верхней части слитка алюминием.
Слитки, закупоренные различным способом, имеют разное строение (рис. 7).
Строение механически закупоренных слитков кипящей стали
Также как и в слитках спокойной стали в момент начала кристаллизации образуется наружная корочка (зона 1 на рис. 7), состоящая из мелких равноосных кристаллов. Ее толщина составляет от 2-8 мм до 25-40 мм в зависимости от размера слитка. Образующаяся корочка получается плотной, так как не содержит газовых пузырей. При интенсивном кипении металла в начальный момент времени газовые пузыри всплывают на поверхность.
Рис. 7 — Строение слитков кипящей стали
а — механически закупоренного; б — химически закупоренного; 1 — наружная корка; 2 — зона сотовых пузырей; 3 — промежуточная плотная зона; 4 — зона вторичных пузырей; 5 — скопление пузырей; 6 — скопление пузырей и усадочных пустот; 7 — «мост» плотного металла.
Вместе с ростом столбчатых кристаллов образуется зона сотовых пузырей (зона 2 на рис. 7). Образование данной зоны связано с уменьшением количества растворенного кислорода в стали, в результате чего снижается интенсивность образования газовых пузырей и исчезает мощный поток, выносящий их на поверхность слитка.
Это, в свою очередь, приводит к тому, что часть образовавшихся газовых пузырей остается в слитке между столбчатыми кристаллами. Оставшиеся в слитке сотовые пузыри растут в том же направлении, что и столбчатые кристаллы — в направлении теплоотвода. Их длина может достигать 70-100 мм. Следует отметить, что высота зоны сотовых пузырей составляет от до высоты слитка.
В верхней части слитка сотовые пузыри отсутствуют, так как они вымываются поднимающимся снизу потоком газа. Высота зоны сотовых пузырей возрастает при повышении скорости наполнения изложниц, снижении интенсивности кипения и уменьшения окисленности металла.
После формирования зоны сотовых пузырей, теплопроводность которой мала, скорость теплоотвода снижается и поэтому прекращается опережающий рост главных осей столбчатых кристаллов. В результате фронт кристаллизации выравнивается и образующиеся газы вымываются с более ровного фронта кристаллизации. Формируется плотная промежуточная зона (зона 3 на рис. 7), состоящая из неориентированных кристаллов небольшого размера.
После опускания крышки на изложницу (механического закупоривания) кипение металла прекращается, так как газовые пузыри больше не могут образовываться. Вследствие прекращения циркуляции газовых пузырей по слитку уже сформировавшиеся на момент закрытия крышкой пузыри фиксируются на границе затвердевания. В результате образуется зона вторичных пузырей (зона 4 на рис. 7).
Кристаллизация центральной части слитка происходит без существенного газовыделения и циркуляции газов. Из-за повышенного содержания в верхней части слитка углерода и кислорода вследствие ликвации, а В результате всплывания газовых пузырей образуется зона скопления пузырей CO (зона 5 на рис. 7). Скопление пузырей приводит к образованию рыхлости, которая распространяется на глубину до 25% от высоты слитка.
Верхнюю часть слитка после прокатки удаляют из-за наличия газовых пузырей и неметаллических включений. Величина обрези составляет: для рядовых сталей — 5-9%, для качественных сталей — 10-13%.
Слиток кипящей стали
В процессе разливки кипящей стали и после ее окончания сталь в изложнице «кипит», т. е. происходит окисление углерода по реакции [С] + [О] = СО с выделением пузырьков окиси углерода.
Окисление углерода и образование пузырьков СО происходит на поверхности формирующихся при затвердевании стали кристаллов. Значительная часть пузырей СО, выделяющихся при кипении остается в слитке. В дальнейшем они завариваются при прокатке.
Для уменьшения неоднородности состава готовой стали кипение вскоре после наполнения изложницы прекращают, накрывая слиток массивной металлической крышкой (механическое закупоривание) или раскисляя металл в верхней части изложницы алюминием (химическое закупоривание).
В слитках кипящей стали не образуется концентрированной усадочной раковины. Усадка здесь рассредоточена по многочисленным газовым полостям. Форма слитка кипящей стали отличается от формы слитка спокойной стали. Поскольку в слитке отсутствует усадочная раковина нет необходимости применять изложницы, расширяющиеся кверху.
Кипящую сталь разливают в сквозные изложницы, расширяющейся книзу. Это упрощает процесс раздевания слитков — изложницу просто снимают с затвердевшего слитка.
Механически закупоренный слиток кипящей стали характеризуется расположением газовых пузырей в определенном порядке. Структура механически закупоренного слитка кипящей стали, приведена на рисунке 22, а.
а— механически закупорены слиток; б— химически закупоренный слиток; 1 — плотная наружная корочка; 2 — зона сотовых пузырей; 3 — промежуточная плотная зона; 4 — зона вторичных пузырей; 5 — скопление пузырей СО; 6 — cкопление пузырей и усадочных пустот; 7 — мост плотного металла Рисунок 22 – Строение слитка кипящей стали |
Толщина наружной корки без пузырей может изменяться от 2—3 до 40 мм и зависит от того удаляются или нет из металла образующиеся при ее затвердевании пузырьки СО. В начале затвердевания корковой зоны высота вышележащего слоя металла и создаваемое им ферростатическое давление малы, благодаря чему при достаточной окисленности стали образуется большое число пузырьков СО. Их всплывание создает поток, интенсивность которого достаточна для отрыва пузырьков, застревающих между осями растущих кристаллов, что обеспечивает формирование беспузыристого слоя металла.
Если же окисленность металла мала, а ферростатическое давление вследствие большой скорости разливки быстро нарастает, то зарождение пузырей затруднено, их образуется мало и не создается сильного потока всплывающих пузырей. В этих условиях пузыри, образующиеся в межосных пространствах кристаллов, остаются в металле, т, е. начинается рост сотовых пузырей.
Таким образом, чем ниже окисленностъ стали и чем выше скорость наполнения изложницы, тем ниже будет интенсивность кипения и меньше толщина беспузыристой корки.
Из оставшихся в металле пузырей по мере дальнейшего выделения окиси углерода формируются вытянутые сотовые пузыри, что связано с образованием в это время зоны вытянутых столбчатых кристаллов. Идет сравнительно быстрый рост главных осей столбчатых кристаллов, между которыми скапливается выделяющаяся окись углерода. Длина сотовых пузырей составляет от 35 до 70—100 мм.
В верхней части слитка сотовых пузырей нет, так как они вымываются потоком газа, поднимающегося снизу. Высота зоны сотовых пузырей обычно равна 1/2—2/3 высоты слитка; она возрастает при повышении скорости наполнения изложницы, снижении интенсивности кипения и уменьшения окисленности металла.
Прекращение роста сотовых пузырей связано с тем, что после сформирования малотеплопроводной пузыристой зоны скорость отвода тепла заметно снижается и замедляется скорость роста главных осей столбчатых кристаллов, между которыми задерживались пузырьки СО. Образующиеся газы вымываются с более ровного фронта кристаллизации и формируется плотная промежуточная зона, которая состоит из неориентированных кристаллов небольших размеров.
После накрывания слитка крышкой (замораживания его верха) кипение прекращается, поскольку пузырьки СО не могут образовываться из-за повышения давления внутри закупоренного слитка. Вследствие прекращения циркуляции формировавшиеся в момент закупоривания пузыри фиксируются на границе затвердевания, образуя цепочку вторичных пузырей, равноудаленных от стенок изложницы (если крышку накрывают рано, в период роста сотовых пузырей, то после закупоривания прекращается их рост; вторичные пузыри образуются рядом с сотовыми, а зона плотного металла между сотовыми и вторичными пузырями в слитке отсутствует).
Затвердевание центральной части слитка идет без заметного газовыделения и циркуляции металла. Лишь в результате усадки кристаллизующейся стали давление внутри слитка немного снижается и создаются условия для образования отдельных пузырей. Скопление их в верхней части слитка обусловлено повышением содержания здесь кислорода и углерода, вследствие ликвации, а Всплыванием пузырей снизу. Это скопление пузырей образует головную рыхлость, которая в осевой части слитка может распространяться на глубину до 25 % его высоты.
Верх слитка с пузырями и скоплением серы и фосфора вследствие их ликвации отрезают при прокатке; величина головной обрези составляет 5—9 % от массы слитка для рядовой стали и достигает 10—13 % для качественной стали.
Химически закупоренный слиток (см. рисунок 22, б) имеет в нижней части зону коротких сотовых пузырей и в верхней — скопление усадочных пустот и пузырей, над которыми, как правило, расположен мост плотного металла. До начала закупоривания и во время разливки сталь в изложнице кипит, формируется наружная беспузыристая корка и начинается рост сотовых пузырей так же, как в слитке при механическом закупоривании. Толщина здоровой корки такая же, как в механически закупоренном слитке 2-40мм и определяется уровнем окисленности стали и скоростью подъема металла в изложнице.
В течение 1—1,5мин после окончания наполнения изложницы производят закупоривание слитка алюминием (иногда ферросилицием). Вводимый алюминий связывает растворенный в стали кислород, поэтому прекращается кипение и рост сотовых пузырей. Длина сотовых пузырей зависит от времени химического закупоривания: их длина тем меньше, чем раньше был введен алюминий.
Расход алюминия на закупоривание выбирают таким, чтобы при дальнейшем затвердевании наблюдалось незначительное газовыделение, которое должно компенсировать усадку стали и предотвращать образование концентрированной усадочной раковины. Пузыри СО образуются в верхней части слитка, поскольку здесь вследствие ликвации повышается концентрация кислорода и углерода. Глубина сужающейся книзу зоны скопления пузырей и усадочных пустот может достигать 30—45 % высоты слитка.
При оптимальной раскисленности (оптимальном расходе алюминия на закупоривание) над областью усадочной рыхлости образуется «мост» плотного металла толщиной около 10 % высоты слитка. Он изолирует пустоты от атмосферы, благодаря чему последние завариваются при прокатке. Головная обрезь слитка при этом составляет 3,5—6 %. Показателем оптимальной степени раскисленности является формирование выпуклой гладкой поверхности слитка.
При недостаточной раскисленности металла наблюдаются прорывы поверхности слитка пузырями СО. Сплошность верхнего «моста» плотного металла нарушается и возрастает величина головной обрези, так как часть полостей в головной части слитка не заваривается при прокатке из-за окисления их внутренней поверхности. Если металл перераскислен, то образуется недостаточно изолированная сверху глубокая усадочная раковина со скоплением ликватов и неметаллических включений. Головная обрезь при этом сильно возрастает, так как в прокате образуются несплошности в местах скопления ликватов и включений, а В результате окисления внутренней поверхности раковины.
Толщина здоровой корки — важный критерий качества слитков кипящей стали. Эта толщина может достигать 40 мм и не должна быть менее 8 мм. Более тонкая корка может окисляться при нагреве слитков перед прокаткой. Сотовые пузыри при этом обнажаются, их поверхность окисляется и поэтому они не завариваются при прокатке. В результате на поверхности проката образуются рванины.
Здоровая корка формируется во время наполнения изложницы металлом и ее толщина определяется интенсивностью кипения стали в этот период. Интенсивность кипения и толщина здоровой корки будут тем больше, чем выше окисленность жидкой стали и чем ниже скорость наполнения изложницы металлом.
Как показал опыт, окисленность жидкой стали, получаемая при существующих методах выплавки, позволяет разливать кипящую сталь со скоростью, не превышающей 1,0 м/мин; при большей скорости наполнения изложницы толщина здоровой корки получается менее допустимой (8—10 мм).
Если необходимо разливать сталь с большей скоростью, то прибегают к использованию так называемых интенсификатеров кипения. В изложницу во время разливки вводят порошкообразные смеси, содержащие оксиды железа. Поступающий из интенсификатора в сталь кислород обеспечивает повышение интенсивности кипения и позволяет получать слиток с достаточной толщиной здоровой корки при скоростях разливки до 2,0—2,5 м/мин.
Для ускорения разливки применяют сочетание скоростной разливки с химическим закупориванием: разливку ведут со скоростью 3—5 м/мин; при этом образование пузырей начинается у поверхности слитка, т. е. здоровая корка не образуется. Благодаря раннему химическому закупориванию размеры пузырей малы и при нагреве под прокатку наружный слой слитка с пузырями окисляется, вследствие чего на поверхности проката рванин не образуется.
Усадочная раковина и усадочная рыхлость
Переход металла из жидкого состояния в твердое связан с формированием кристаллической структуры, при которой упаковка атомов более плотная, что приводит к уменьшению удельного объема металла и неизбежной усадке его от 2,0 до 5,3%.
Формирование усадочной раковины в спокойном металле видно из приведенной схемы (рис. 132). Усадка проявляется в виде воронкообразной пустоты как результат кристаллизации последовательных слоев металла в каждом случае из жидкости пониженного уровня. Эта усадка приводит к образованию сосредоточенной усадочной раковины в верхней центральной части слитка.
Неизбежная усадка металла при кристаллизации создает осевую рыхлость (пористость) и рассеянную пористость по всему сечению слитка. В большинстве случаев осевая рыхлость располагается под усадочной раковиной на расстоянии 250—350 мм от нее и распространяется вниз на значительную глубину второй и третьей четверти высоты слитка.
Осевая рыхлость образуется в случае недостаточности питания жидким металлом при кристаллизации осевой области слитка. На макроотпечатках травленых продольных разрезов слитков осевая рыхлость выявляется в виде конической V-образной формы, с вершиной, обращенной вниз.
Рассеянная или рассредоточенная рыхлость образует общую пористость в раскате слитка. Основной причиной образования рассеянной рыхлости является замедленное охлаждение слитка в процессе кристаллизации металла. Развитие крупнодендритных равноосных кристаллов может увеличить рассеянную рыхлость, так как при формировании каждого кристалла повторяется процесс местной усадки.
Образование усадочной раковины в какой-то мере взаимосвязано с выделением газов из металла. Усадочные процессы развиваются при переходе металла из жидкого состояния в твердое, при этом же переходе резко снижается растворимость газов, что не может не оказать влияния на усадку стали. Усадочная раковина заполнена газами при давлении до 0,3 Мн/м 2 (3,0 ат). В составе газа преобладает водород до 93%.
Сумма пустот в слитке, образованных в результате усадки, должна быть постоянной, зависящей от начальной температуры и физических свойств металла, определяющихся его составом:
Суммарная объемная усадка εv слагается из суммы трех усадок: в жидком состоянии, при затвердевании и в твердом состоянии:
Анализируя эти два уравнения, можно сделать вывод, что влияние температуры на сумму пустот невелико, так как температура жидкой стали практически меняется в небольших пределах и два последних слагаемых второго уравнения постоянны и не зависят от температуры.
Однако влияние температуры может сказаться на распределении и перераспределении пустот при неизменной сумме всех пустот. Так, например, при разливке горячего металла будут лучше заполняться микропоры, создающиеся при твердении металла, но будет в большей мере развиваться усадочная раковина. При разливке холодного металла слиток будет менее плотен, но с меньшей усадочной раковиной. Очевидно, если нет особых требований к плотности металла, то экономически выгоднее разливать его при умеренных температурах, определяющихся технологическими условиями. К разливке металла при высокой температуре следует прибегать тогда, когда производится сорт стали, требующей повышенной плотности металла с тщательным контролем макроструктуры.
Меры борьбы с усадочной раковиной и рыхлостью
Развитие усадки по высоте слитка, а также осевой рыхлости нарушают сплошность металла и этим может быть вызван расслой при прокате. В приусадочных областях, а следовательно, у усадочной раковины металл кристаллизуется в условиях недостаточности металла, поэтому могут быть недостроенные кристаллические ячейки. Это явление и повышенная загрязненность металла у усадочной раковины формируют металл пониженных механических свойств и подверженность его коррозии. Эти обстоятельства заставляют отрезать головную часть слитка, где локализуется усадочная раковина, и тем терять до 15% и более металла на каждом слитке.
Так как получить слиток спокойной стали без усадочной раковины невозможно, то борьба с усадочной раковиной может быть в направлении создания таких условий кристаллизации, чтобы усадочная раковина была наивыгоднейшей формы, наибольшей концентрированности с наивыгоднейшим расположением в головной части слитка. С этих позиций может быть оценено влияние формы изложницы, определяющей расположение усадочной раковины в слитке. Рис 133 представляет схемы кристаллизации слитка в расширяющейся книзу и расширяющейся кверху изложницах.
В прямой или цилиндрической изложнице с высоким отношением высоты к поперечному размеру Н/В формируется слиток с узкой углубленной усадочной раковиной. Обычно этому невыгодному расположению раковины сопутствует сильное развитие пористости (осевая рыхлость). В изложнице,расширяющейся книзу,возможно формирование слитка с вторичной усадочной раковиной. Изложница, расширяющаяся кверху, позволяет формироваться слитку с более концентрированной выведенной вверх усадочной раковиной с меньшим развитием осевой рыхлости слитка, чем в предыдущих двух случаях.
Таким образом, изложница, расширяющаяся кверху, является более приемлемой для формирования здорового слитка спокойной стали. Это связано с тем, что в слитке, расширяющемся кверху, тепловой центр размещается в верхней трети слитка в более уширенной части. В соответствии с этим в верхней части дольше сохраняется жидкое состояние и кристаллизация, происходящая под жидким металлом, получает более длительное и полноценное питание.
Формированию здорового плотного слитка спокойной стали способствует направленная кристаллизация от периферии к оси слитка и снизу вверх. Утолщенные стенки в нижней трети изложницы и массивный поддон ускоряют и усиливают теплоотвод по крайней мере в первые моменты отвердевания слитка, что повышает интенсивность затвердевания слитка снизу и с боков и уменьшает глубину распространения осевой рыхлости.
Потери тепла зеркалом жидкого металла в верхней части слитка приводят к затвердеванию металла сверху (образуется мост). Замораживанию металла сверху слитка способствует расширение изложницы кверху, так как в этом случае открытое зеркало жидкого металла будет наибольшим. Применение прибыльных надставок нейтрализует это явление, уменьшает теплопотери лучеизлучением открытой поверхности жидкого металла, сохраняя большие массы жидкого металла более длительное время.
Главное назначение прибыльных надставок — сохранение запаса жидкого металла для компенсации усадки при кристаллизации стали в изложнице. Соответственно этому усадочная раковина оказывается в большей степени концентрированной и выведенной в прибыльную часть слитка.
Прибыльные надставки конструируются из соображений создания достаточного запаса жидкого металла для питания им затвердевающего слитка, сохранения этого запаса металла в жидком состоянии до окончательного отвердевания тела слитка и уменьшения открытой поверхности жидкого металла.
Обычно эти задачи обеспечиваются, если масса прибыльной части составляет 15—16% массы слитка, диаметр или поперечный размер низа прибыли к свету меньше на 40—50 мм тех же размеров верха изложницы. Для уменьшения теплопотерь и сохранения металла прибыльной части в жидком состоянии в течение более продолжительного времени надставки футеруют с внутренней стороны.
Надставка (рис. 134) квадратного или прямоугольного сечения обычно футерована шамотным кирпичом. Форма этой надставки нерациональна тем, что металл быстро затвердевает в углах прибыли. Для компенсации этого приходится увеличивать объем прибыли, из-за чего увеличивается обрезь слитка, доходя до 16 и даже до 20% от массы слитка.
Надставка круглого или овального сечения более рациональна по сравнению с предыдущей, в результате чего головная обрезь уменьшается до 15—16%. Надставки этого типа обычно футеруются набивной массой, состоящей из шамотного боя и шамотного порошка с добавкой 10% глины на связке из жидкого стекла. Такая футеровка может выстоять до 80 разливок.
Надставка плавающего типа нижним основанием входит в изложницу. До разливки надставки опираются на деревянные брусья или клинья, которые по окончании разливки выбиваются, и надставка опускается с твердеющим металлом. Это уменьшает обрезь металла, так как расход металла на прибыль составляет всего 13—14%. Надставка футерована специальным кирпичом, так что между футеровкой и телом надставки создается воздушный зазор, что значительно сокращает большие потери тепла.
Поскольку сохранение жидкого металла в прибыльной части до полного затвердевания слитка способствует сокращению усадочной раковины, уменьшению обрези слитка, формированию более здорового слитка, целесообразно обогревать прибыльную часть слитка.
Однако предложения и попытки осуществления электродугового или газового обогрева не нашли применения из-за сложностей оборудования и организации.
В настоящее время большое распространение имеет применение термитных (люнкеритовых) смесей для обогрева верха прибыли. Эти смеси состоят из экзотермических восстановителей алюминия, кремния, углерода, богатого кислородоносителя, обычно берут боксит, богатая марганцевая руда, окалина и т. д., шамот выполняет роль наполнителя. Смеси составляются такими, чтобы калорийность их была не ниже 2,3—2,5 Мдж/кг (550—600 ккал/кг) и зажигались они при температуре не выше 400—600° С. Состав применяющихся люнкеритов весьма разнообразен и различается в зависимости от марки выплавляющейся стали и от завода, на котором была разработана и применяется смесь. Люнкериты трех передовых заводов приведены в табл. 31.
Следует заметить, что в настоящее время разработан способ утепления прибыльной части слитка, применяют люнкериты в качестве экзотермических обмазок внутренней футерованной поверхности надставки или смеси для набивки футеровки. В последнем случае головная обрезь слитков уменьшается до 8 %.